
Debugging from the outside → in

Edd Steel

@eddsteel

mailto:@eddsteel

SOA at HootSuite

LAMP → SOA
Lots of new Scala code
Lots of new Akka code
Production-ready means something
(we're hiring!)

OH at the reactive meetup

What sucks about this stuff?

The tooling isn't there yet.

IDE support
profiling, debugging
distributed systems are hard.

Does it work?

Does it work?
Compiler
Static Analysis
Unit Testing
Property Testing
Integration Testing

OK, But does it work?

Test the whole system
Load testing
Profiling
Typesafe Console
Log analysis

Problem 1

tool's view != dev's view
Actors and Futures not threads
ActorSystem-akka.actor.worker-dispatcher-3

Message-passing components and anonymous functions
Module$InnerModule$Foo$$anonfunbar1$$anonfun$apply$1.apply(<console>:10)

Once our system is made to work with the tools, is it still the same system?

Problem 2

This isn't very agile.
Dev → Vagrant → Staging → Load Testing → Production

Problem 3

SOA pushes system integration to deploy time.
It's still your problem.

Plugging the gaps

We need a tool that will
work in production, without impacting performance
provide a central view of a distributed system
Organise information flexibly
Tell us, at a minimum

Did X happen and where?
How often?
How long did it take?
What was the impact?
???

MVP

Monitoring utilities?

Requirements sound like characteristics of our monitoring utilities
3 flavours

Alerts
Graphs
Aggregated logs

Graphs

Killer App: tracking metrics
Build dashboards that show key system metrics

execution time
request count
coffee supply

See impact of code changes
Monitor outages, early warnings

Graph stack
statsd-client/ diamond
statsd
graphite
graphite dashboards

Statsd/Graphite Features
UDP and sampling from multiple sources

counters, gauges, timing (mean/ 90th percentile/ 99th percentile)
hierarchical data series
{system}.{host}.{actor}.{function}.time

aggregation, combination, calculation

Log aggregators

Killer app - logging exceptions
Post mortems
User tracing across systems
rare, obscure bugs
edge cases and exotic browser/OS/device combinations
generate test data

Log stack
udp-logger
logstash
elastic search
kibana
hadoop

Elastic Search features
UDP support from multiple sources
schemaless, structured messages + search
map/reduce batch jobs

So, monitoring utilities?

both work in production, without impacting performance
provide a central view of a distributed system
organise information flexibly

Graphing X shows
if it happened
where (if that's in the key)
how long it took
how the system looked at the same time.

Logging X shows
if it happened
where (if it's part of the message)
the context
trends around X (kibana or hadoop)

Graph Example I

Our System

The Metric: Execution time
System was underperforming with low load
Performance improved when we increased load
Testing showed no issue with receiving across two sockets
Requests In matched Responses Out

A Clue

puller to receiver slice is large

A Clue

minimum time, at low load was about the same as socket timeout

The Hypothesis
waiting for both sockets to have requests, instead of reading and
processing off whichever had work.
big improvement in clarity

some part of the system is causing delays
there's a bug in our polling code

Log Example I

service client logs how many service calls are made in a web request

A process emerges

Our "process"
Identify a metric (or add one)
Find a clue
Form a hypothesis
Fix and watch the metric change (else repeat)

Graph Example II

Example 1: The Metric
request timeouts increased when load increased
sudden change
cause unclear

A Clue

size of request batches correlated, increased

A Clue

problem when upper time b/w puller and worker == request timeout

Hypothesis
bug: no cap on request batch size
first requests in batch timed out before the batch was sent.

Log Example II

DB replication during rollout
PHP and scala systems, old and new DBs, tungsten replicator to
sync them
Soft-launch

percentage use new then old (and skip replication)
rest use just old (and replicate)

Progress of an update through old and new systems

The kinds of questions we've been asking
and answering

what's my workload distribution like?
what's the best number of workers for this traffic level?
which part of our pipeline is the bottleneck?
did my config change have the desired effect?

are my actors keeping up with their work?
are those lost messages due to a bug or poor performance?
are my assumptions correct? Does x affect y?
did the last two weeks of work actually make things better?

Not to mention
Is twitter down?
Did someone redeploy?
Is instance 2 amazony today?

Guidelines

The regular rules apply
don't fix what you haven't measured
don't prematurely optimise
test your assumptions
remove noise

Organising metrics
record fine-grained, then aggregate

requests.*.endpoint1 / requests.host1.*

Misc.
sample if necessary.
system stats are useful
combine graphs to demonstrate correlation
graph significant external events
graph history

What sucks about this stuff?

It's a paperclip
The graphite UI can suck
UDP can suck

udp-logger is open source (Apache)

Back end for log4j and slf4j
Built in DNS SRV record support for discovery of logstash
You'll still need to format your messages usefully.
typesafe config

https://github.com/hootsuite/udp-logger

https://github.com/hootsuite/udp-logger

statsd-client is open source (Apache)

Wrapper for etsy's statsd client
More idiomatic/ lower-profile
typesafe config

https://github.com/hootsuite/statsd-client

val callParent = monsters exists { m =>
 timed(s"monster-check.${checker}.$m") {
 checkUnderTheBed(m)
 }
}

https://github.com/hootsuite/statsd-client

Thanks!

Edd Steel
@eddsteel

code.hootsuite.com

github.com/hootsuite

